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Front tracking is an adaptive computational method in which a !ower dimensional moving 
grid is fitted to and follows the dynamical evolution of distinguished waves in a thrill flow. The 
method takes advantage of known analytic solutions, derived from the Rankine-Hugoniot 
relations, for idealized discontinuities. In this paper the method is applied to the Euler 
equations describing compressible gas dynamics. The main thrust here is validation of the 
front tracking method: we present results on a series of teat problems for which comparison 
anwers can be obtained by independent methods. c 1986 Acxiemlr Prew ,nc 

1. TNTR~OLJ~TI~N 

Front tracking is an adaptive computational method for modeling fluid flow Its 
goal, shared with adaptive methods in general, is to obtain increased resolution by 
using special computational degrees of freedom that (a) are placed (in space and 
time) where they are most needed: and (b) fit the nature of the solution as closely 
as possible. Within this general framework, tracking is distinguished by the choice 
of a lower dimensional adaptive grid, called the front or the interface. as its special 
computational degree of freedom. Thus for flow problems in two space dimensions, 
tracking employs a moving one-dimensional grid, i.e. a system of curves, in addition 
to a two-dimensional grid. Furthermore these curves are not purely geometrical, 
but are associated with physical waves in the solution. They are defined implicitly 
by the solution, and they evolve dynamically with it. 

The problems for which tracking is an attractive method are those containing 
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discontinuities and other singularities concentrated on surfaces (curves in two 
dimensions). Such singularities abound in compressible fluid dynamics: they include 
shock waves, contact discontinuities, material interfaces, phase boundaries, slip 
lines, and chemical reaction fronts. 

What about the internal structure of the discontinuity? Sharp discontinuities exist 
as solutions of mathematical equations (e.g., the Euler equations) that describe 
idealized physics. The missing physics and corrected equations are usually known 
(e.g., the Navier-Stokes equations), and so are the parameters that govern the 
correction (e.g., the viscosity). Such a parameter often defines a length scale that 
measures the width of the discontinuity, For many flow problems this length is 
much smaller than realistic computational mesh lengths, so that two possibilities 
arise: either the physics at subgrid levels can be ignored and tracking based on the 
idealized equations is adequate for modeling the physics; or subgrid physics cannot 
be ignored and local mesh refinement must be used to resolve the internal structure 
of the discontinuity. There are problems of both types, and there are problems with 
multiple length scales that combine these types (so that the discontinuity, once 
resolved, contains a further sharp discontinuity within it). 

Early proposals for tracking are described in Richtmyer and Morton [20]. These 
ideas were further developed by Moretti [18]. These solutions are of high quality 
but appear to be limited to somewhat simplified situations. The goal of the work 
reported here is to implement a general purpose computational package based on 
front tracking ideas that provides highly resolved solutions for partial differential 
equations. At present it is applicable to problems with important discontinuities 
that contain ignorable subgrid physics. The current effort is based on systematic use 
of data structure and modular programming concepts. Our implementation is 
designed to allow flexible adaptation to a variety of fluid problems. Parallel efforts 
using many of the same computational modules have been directed at incom- 
pressible two-phase flow in oil reservoirs [ 10, 7, 8 J and instabilities in fluid inter- 
faces [ 131. 

In this paper we describe the algorithm used to solve a hyperbolic system of non- 
linear conservation laws 

w,-tO.f(w)=O. (1.1) 

While most of the discussion will be valid for general systems of conservation laws, 
we will be concerned specifically with the Euler equations for a compressible, 
inviscid, polytropic gas, for which 

and f(w) = 
(1.2) 
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Here F is the mass density of the fluid, m is the momentum density (m = pv. where 
v is the fluid velocity), E is the total energy density, and p is the thermodynamic 
pressure, specified by the polytropic equation of state 

p = (;‘- 1 j[E- ImJ’Gp] 4 i.3) 

for some contant ;’ > 1. These equations embody, respectively, the conservation of 
mass. Newton’s law, and the conservation of energy. 

We have tested the resolution of the front tracking method, as applied ta gas 
dynamics, by solving model problems on coarse or moderate grids. The results oi 
these tests are desribed in Section 6. In principle, tracking also applies to com- 
plicated problems on fine grids if fast computers are used, and it applies to 
problems (such as combustion) for which subgrid physics is not ignorable if a mesh 
refinement algorithm is incorporated, but these steps have not yet been taken 

We conclude this introduction with a comparison of our progress on front track- 
ing relative to some of the standard difficulties which have been encoutered in 
previous efforts to implement this method. Briefly we have solved some but not at1 
of these standard difficulties. Because of the general framework being used, the 
authors believe that there is a good chance to overcome mosr of the remaining dlf- 
hculties. We are grateful to one of the referees for supplying the following list of 
classic difficulties for front tracking. 

I. Achieving second-order accuracy at a shock without post-shock oscillations. 
2. Avoiding stringent limits on the time step arising in the bits and pieces oi 

zones which are crossed by a tracked front. 
3. Properly treating slip along a front. 
4. Treating (a) highly distorted fronts, and (b) changes of the topology of regions 

bounded by fronts from simply connected to multiply connected regions. 
5. Treating collisions and intersections of fronts with other fronts and with boun- 

daries. 
6. Treating the disappearance of weakening fronts and the appearance of new 

fronts at boundaries or at collisions of other fronts. 

The status of front tracking on these six difficulties is as follows: 

1. This problem is solved on a conceptual level. but needs a second-crder- 
accurate Riemann solver to complete the numerical implementation. 

2, 3, and 4a. These problems appear to be fuily solved. 
4b, 5, and 6. There is work in progress on these problems, about which we 

make no comment at the present time. A partial solution to these problems for 
petroleum reservoirs is shown in ES]. 

Not ail scientific and numerical issues associated with the propagation of nodes 
have been fully resolved, nor have all node types been implemented at the present 
time. There is work in progress on both of these points. 
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2. CONCEPTS AND DATA STRUCTURES 

In this section we describe the data structures used in our implementation of 
front tracking. The discussion follows the division of the code into libraries. 

2.1. Geometry and Intecfaces 

The basic data structure defining the geometry and topology of the com- 
putational domain is called an interface. An interface in a two-dimensional domain 
is defined as a collection of oriented curves. A curve starts and ends at nodes, and 
consists of a doubly linked list of bonds (so that each bond contains a pointer to 
the next and the previous bond). Associated with each node and with the beginning 
and end of each bond is a point that defines a position in the plane. In most 
situations the curves are not allowed to intersect (except at nodes); in this case an 
interface divides the plane into connected components. 

A library of subroutines is devoted to supporting these data structures and per- 
forming elementary operations, including creating (i.e., allocating, storing and 
installing), deleting, copying, printing, and reading these objects. Because linked 
lists are used, the time needed to add or delete a point is independent of the number 
of points on the interface. Other routines are available to join or split curves, check 
for intersections, zoom on subdomains, and compute the topological component 
containing a given point. This last computation arises frequently and must be 
efficient. By suitable preprocessing of the interface, this point location problem can 
be made effectively independent of the length of the interface for non-pathological 
interfaces [ 121. 

The interface library is described in more detail in a separate publication [12]. 

2.2. States and Fronts 

The interface data structures (and the programing language in which they are 
written) allow insertion of problem-specific data entries. An interface equipped with 
data entries specific to front tracking is known as a front. A front contains some 
general ideas of physics but excludes details of the physical equations being 
modeled. The principal entries specify the physical nature of curves and nodes and 
the state variables associated with them. 

Curves are of two types: boundary curves and physical curves. A boundary curve 
is further classified as being a periodic boundary, a Dirichlet boundary (coupling to 
ambient reservoir), or a Neumann boundary (acting as a reflecting boundary). The 
various physical types of curves are defined by the physics being modeled. For gas 
dynamics the physical curves are sound waves (including shocks) and contact dis- 
continuities (including material discontinuities and slip lines). Nodes are of three 
general types: fixed nodes, boundary nodes, and physical nodes. A fixed node joins 
boundary curves; for example, it can demarcate a corner in a wall or separate cur- 
ves corresponding to different boundary conditions. At a boundary node a single 
physical curve meets a boundary curve, such as when a shock moves normally 
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along a wall. The classification of physical nodes for gas dynamics is given in Sec- 
tion 5. 

Throughout most of the code, a state is the location of a segment of storage with 
a fixed size. Exactly what information is stored in a state depends on the physics 
being modeled, but only a few of the lowest-level subroutines (e.g., the Riemann 
problem solver and the Lax-Wendroff elementary integration step) depend on the 
specific form of this information. For gas dynamics there are four real numbers, 
specifying the density, two components of monumenturn density, and the energy 
density, together with the adress of the data base describing the equation of state. 
Since a curve in the front presents a physical wave across which there is, in general, 
a discontinuity in the solution, there are two states associated with each point of a 
curve, corresponding to its two sides. At a node there is a state associated with each 
component adjacent to it. For convenience, however, we associate these states with 
the ends of the curves that meet at the node, rather than with the node itself. 

The front library is a collection of subroutines that support states, boundary con- 
ditions, and the data management and geometrical aspects of the dynamical 
propagation of curves and nodes. All physics-dependent operations are confined tc 
a few subroutines that are accessed through pointers to functions that are defined in 
a physics library. Briefly, the dynamical propagation of the front is a follows. For 
each curve there are two sweeps over its points: the first employs a physics-depen- 
dent subroutine that moves each point and updates its associated states in. accor- 
dance with waves propagating normally to the curve; the second constructs a three- 
point stencil of states centered at each point and calls a physics-dependent sub- 
routine that updates the center state by taking account of waves moving tangen- 
tially to the curve. The points in the vicinity of each node are propagated so as ro 
allow for interaction of the waves meeting at the node. For fixed and boundary 
nodes this can be, accomplished using the subroutine that propagates a point 
together with geometrical constructions; for physical nodes specialized routines are 
called. The front is then remeshed according to one of several algorithms designed 
to redistribute points to enhance curvature resolution and to prevent pile-ups and 
thinning. To define the states at new front mesh points the remeshing subroutine 
uses a physics-dependent subroutine to interpolate between nearby states belonging 
to the same component. Finally the front is checked for self-intersections. If inter- 
sections are found, a physics-dependent subroutine that untangles the front is 
called. Further details on the propagation of the front are given in Section 4. 

2.3. Interior Woes 

The region away from the curves defining the front is cahed the interior. Since the 
curves represent possible discontinuities in the solution, each component of the 
interior is regarded as the domain for a separate initial/boundary-value problem. 
Depending on the physics being modeled, elliptic, parabolic, or hyperbohc 
equations are to be solved. For gas dynamics the system is hyperbolic, so we wii! 
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restrict our attention here to a library of routines for solving hyperbolic equations, 
especially hyperbolic conservation laws. 

State variables in the interior are associated with points on a rectangular grid. 
Each grid point belongs to a specific component. The value of the solution at an 
arbitrary position in the computational domain is obtained through bilinear inter- 
polation of interior states or, in case the position is close to the front, through 
linear interpolation between interior states and states on the front belonging to the 
same component. The calculation of such states is necessary in the normal 
propagation sweep along the front, so care is taken to divide each component into 
triangular elements that enable efficient interpolation. 

To update the interior states in time a number of schemes are provided. At 
present the random choice, scalar upwind, and Lax-Wendroff schemes using spatial 
operator splitting, as well as a fully two-dimensional Lax-Wendroff scheme, have 
been implemented. It is critical to the front tracking method that the states used in 
the stencils for these schemes all belong to the same component. In our application 
to gas dynamics we have used the Lax-Wendroff schemes, which we describe further 
in Section 3. 

2.4. Utilities and Dritlers 

Various general purpose routines for storage allocation, debugging, and 
input/output are contained in a utility library. Routines that govern the control 
flow of the time loop, initialization, diagnostic analysis of the solution, and printing 
are contained in a driver library. Also in the driver library are routines that 
specially format the input and output to interface to a package of data analysis and 
graphics programs. 

2.5. Phqlsics Subroutines 

As indicated above, certain operations on state variables and points on the front 
ultimately depend on the physics being modeled. All of these features have been 
isolated in a handful of subroutines that are accessed though abstract function 
pointers. For gas dynamics the key subroutines needed are: the subroutine that 
propagates a point, which is essentially a non-local Riemann problem solver; the 
subroutine that updates the states during the tangential sweep of the front, which is 
a one-dimensional Lax-Wendroff operator; the specialized subroutines that 
propagate physical nodes, which solve two-dimensional Riemann problems; and the 
stencil operator for the interior scheme, which is a one- or two-dimensional Lax- 
Wendroff operator. These subroutines will be described in the following. In addition 
there is the subroutine that initializes the front and interior according to the test 
problem being studied along with miscellaneous subroutines for diagnostic analysis 
and printing of the solution. 
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3. THE INTERIOR SCHEME 

The numerical approximation to the solution of the non-linear conservation law 
(1.1) is represented by state variables at the nodes of a rectangular grid together 
with double-valued state variables at the points on an interface. The solution at an 
arbitrary position in the computational domain is obtained by interpolating among 
these interior and front states, as we now describe. The interpolation position lies in 
some rectangular grid block defined by four grid nodes; it is also regarded as lying 
in some specified topological component. Since the front represents a possible dis- 
continuity in the solution, it is important not to interpolate between states 
corresponding to different components. If the four grid nodes all lie in the same 
component as specified, then we may obtain the solution using bilinear inter- 
polation. If, however, not all of the grid nodes lie in the same component, the frront 
cuts through the grid block to separate the grid nodes from one another. In this 
case only the grid nodes that lie in the specified component of the interpolation. 
position, together with states on the appropriate side of the front, are used in the 
interpolation. Thus we triangulate each grid block that is crossed by the interface 
and use linear interpolation on these triangular elements. Our present triangulation 
scheme determines the points on the front where it crosses the vertical and borizon- 
tal grid lines; these points, along with the grid nodes lying in the correct com- 
ponent, define the corners of the triangles. In this scheme it is computationally 
efhcient to determine the triangle in which the interpolation point lies, since in all 
but one case the triangles are arranged in a star-like fashion about one common 
corner. 

For the calculation of the solution in the interior regions we use either an oper- 
ator split one-dimensional Lax-Wendroff or a fully two-dimensional Lax-Wendprrff 
scheme. ere we discuss only the two-dimensional (unsplit) scheme. The t~‘o- 
dimensional scheme involves two half steps. To facilitate the coupling of the fronr 
and the interior, the front is also advanced in half steps. Since the Lax-Wendroff 
scheme is a leapfrog composition of two Lax-Friedrichs steps it is enough to 
describe the Eax-Friedrichs scheme. This scheme usually assumes the initial data to 
be known at the four corners of a square. In our application, however. there are 
irregular squares, i.e., squares for which one or more of their corners are cut off by 
the front and thus lies in the wrong component. To circumvent this difficulty we 
view the LaxxFriedrichs scheme as defined by a flux balance: the sum of the fluxes 
through the sides of a mesh block determines the change in time of a conserved 
quantity integrated over the block. From this point of’ view the Lax-Friedrichs 
scheme is defined for irregular squares as well as regular squares. In fact, ine 
propagation of the front also determines the fluxes through the front and thereby- 
through the sides of the irregular squares. The triangulation that is constructed for 
interpolating the solution is used to define these irregular squares 

To be more explicit, consider a particular grid block with side length AX. Given 
the solution at time t,, we wish to calculate the solution at the center .Y: of this 
block at time t, = t, + dt/2. The center of the grid block lies in some topological 
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component at the later time t i, and it is the solution in this component that we 
wish to evaluate. Let A(t) denote the portion at time t of the grid square lying in 
this component, and let IA(t)/ denote its area. Then by integrating the conservation 
law (1.1) over this region and then integrating in time from to to t, we obtain 

I w(x, fl) A(q) 

= ficx, t). fcwtx, t) j. (3.1) 

Here fi(x, tj and O(X, t), for points x on the boundary aA( are the unit normal 
vector and the normal speed of the boundary. Thus for points x on the tracked 
front, a(x, t) is the normal speed of the front, while for other points it vanishes. In 
order to obtain a numerical approximation to this formula that is stable, we note 
the identity 

(3.2) 

for any constant state W. By suitably choosing W we can arrange that the integral on 
the left in (3.2) approximates the second integral on the right in (3.1) with relative 
error O(dx’). For instance, if the front at time to consists of a single line segment 
crossing the grid block, then we can take W to be the solution on the front at the 
center of this segment. By approximating the other integrals in (3.1) we obtain the 
formula 

Mt,)l W(X,? t1) = Mto)l wo + (Iatl)l - Mto)l) 6’ 
At -- 
2 s fi(x, to). f(w(x, to) j + O(At’ Ax2 ) + O(At A-x3), (3.3) 

aA 

in which wO represents the average value of the solution over the region A(t,), so 
that it corresponds to the correct component. If IA(t, )[/A.? is not too small, 
Eq. (3.3) provides a suitable approximation for w(xC, tl); otherwise x, is in general 
so close to the front that it is appropriate to approximate w(x,, tl) with states on 
the front. We note that when the front does not cross the grid square, Eq. (3.3) 
reduces to the usual Lax-Friedrichs approximation. Finally, the solution at time 
to + At is obtained using two Lax-Friedrichs steps in a leapfrog combination. 

4. THE FRONT SCHEME 

The propagation of the front involves the motion of points on the front and the 
evolution of the states on the front. The propagation of points in the vicinity of 
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nodes, where in general curves meet, is described in Section 5; here we consider 
points in the interior of a curve. 

Let zO be an interior point on the front at time t,. Points z(O) = z”)(s) near x0 are 
labeled by their arclength displacements away from z,=zio~(0). A coordinate 
system for a neighborhood of z. is constructed as follows (see Fig. 1). Each pair 
(Y, s) corresponds to the point X(T, s) that is a distance r along the line drawn nor- 
mal to the front through the point zco)(s j. The coordinate curves s = const are thus 
lines perpendicular to the front. Let ii(r, s) and $(r: sj be the parallel translates to 
x(I., s) of the unit vectors normal and tangent to the front at zCot(s), respectiveby. 
The system 

w,+V.f(wj=O (3.1) 

of conservation laws may be written in terms of the normal and tangentiai 
derivatives fi. V and $. V as 

w,+A. [(a~vjf(wj] +b. [(s.vjfjwj] =o. (4.Zi 

We wish to solve this system subject to the initial conditions w(r= to) = w”!, 
where w”’ is smooth except for possible jump discontinuities across z”‘. Let w(” 
denote the exact solution at time I, + dt to this problem; w’*’ is smooth except for 
possible jumps at the exact front position z@) = z(~‘(s). We say that a computed 
solution w(‘) is correct at the approximate front zCci = z(“(s) through order di ;f 

and 

ZyY) = ZyT) + O(At2j (4.3) 

w@’ (zceJ(s), to + At) = w@’ (z@)(s), I, + dtj + O(dPj, (4.4) 

where by this last equation we mean equality of the states on corresponding sides of 
the jump discontinuities. 

FIG. 1. The local coordinate system used for propagating the front. 
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The computed solution of system (4.1) is obtained using operator splitting of the 
system (4.2) in the normal and tangential directions. First the normal equations 

w,+fi. [(i-i.V)f(w)] =o, w( t = to) = W’O’ (4.5) 

are solved approximately to obtain the computed front position z(‘) = z@)(s) and 
the computed normal solution w icn) at time to + 4t. Then the tangential equations 

w,+6.[(6.V)f(w)]=O, w( t = to) = WI=“’ (4.6) 

are solved approximately to obtain the solution wCc’ at time I, + 4t. 
Let us analyze the error involved in this procedure. The normal front speed C(S) 

at time to satisfies 

Zte’(S) = z(O)(s) + dto(s) qo, s) + O(4P). 

By Eq. (4.2) and Taylor’s theorem, 

(4.7) 

W@’ (Z’ys), to + 4t) = w(O) (z(O)(s), to) + dkJ(S)[(ii~ V) w(“‘](z’o’(s), to) 

-40-i. [(ii. V) f(w(O’)](z’O)(s), to) 

-4tg. [(S’ V) f(w’“‘)](z’o’(s), to) + O(LIt’). (4.8) 

Assume that the computed normal solution w (cn’ is a correct solution at the 
approximate front z “‘=z(c’(sj to the normal equations (4.5) through order 4t. 
Since the front position obtained by solving the normal equations will agree 
through order 4t with the exact front position, we conclude that 

w’c”‘(z’c’(s), to + 4t) = w’“‘(z(o)(s), to) + dto(s)[(fi. V) w’“‘](z’o’(s), to) 

-4tii. [(ii V) f(w’“‘)](z’o’)](z’o’(s), to) + O(&). (4.9) 

Assume in addition that w(‘) . IS a correct solution at the approximate front 
zCcJ = z(‘)(s) to the tangential equations (4.6) through order 4t. Therefore 

w(=)(zys), to + 4t) = w’c’yz(c’(s), to + 4t) 

--A&. [(a(s). V) f(w’c’)](z’c’(s), to+ At) + O(Llf’).(4.10) 

Combining these last two equations shows then that w (‘) is a correct solution at the 
approximate front z “I = z(‘)(s) to the full equations (4.2) through order 4t. In the 
following we demonstrate how normal and tangential solutions satisfying the above 
assumptions can be obtained. 

First we propagate the front and the states along the front in the normal direc- 
tion. The solution at time to is evaluated on both sides of the front at zo, yielding a 
left and a right state. The solution at time to is also evaluated at a normal distance 
4, on each side of the front. These states will be used to calculate the waves that 
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impinge on the front from the interior. Notice that if the front contains curves too 
close to each other, these new evaluation points z0 &- dr A may be in components 
different from the points z0 F 0. i? at the front. In this case the evaluation point is 
shifted into the correct component. (Conceptually, the state at a point outside a 
given component is obtained by extrapolation.) Thus we always have as data two 
left states corresponding to one component and two right states corresponding to a 
second component. 

These states are used as initial data for an extended or non-local Riemann 
problem. Higher-order solutions of these Riemann problems have been discussed 
before. To reduce sampling error in the random choice method, a steady-state 
Ansatz has been used [6, 111 to extend local Riemann data over a mesh block, 
thereby obtaining a non-local Riemann problem, which is solved to higher order. 
Wigher-order Godunov schemes [ 1,2] also employ ideas related to solutions of 
non-local Riemann problems. In the present scheme we solve the non-1ocaE 
Riemann problem as follows. 

Using the left and right states located at the front we solve an ordinary Riemann 
problem. The solution is the correct answer to the non-local problem at time t, + 0, 
and it is used to approximate the propagation speeds of the characteristics 
backward from t, + At to t,. We find starting points for these characteristics in the 
normal intervals 

[z,+O.fi, z,+Ar.A]. (4.1 I ) 

The states at these points are calculated using linear interpolation between the 
states on the front and the states at the normally displaced points. In this way we 
determine which waves from the normal intervals enter the front. Using differential 
equations in characteristic form together with the Rankine-Hugoniot jump con- 
ditions we compute the states to be associated with the propagated front at time 
to + At. 

The solution of the normal sweep along the front is taken as initial values for the 
tangential sweep. By linear interpolation, the states on ea’ch side of the front can be 
defined everywhere along the front. Therefore we can evaluate the normally 
propagated solution at each mesh point and at two neighboring points displaced a 
distance As aiong the front. Using these three stencil points and the one-dimen- 
sional Lax-Wendroff scheme, adapted for the tangential equations (4.6j. we deter- 
mine the tangentially propagated state variables. Notice that tangential propagation 
of the points on the front is equivalent to a remeshing of the front, in the iimix 
At -+ 0, so it is not essential to move these points during the tangential sweep. 

In what follows the normal sweep is described in more detail for gas dynamics. 

4. I. The Normal Sweep for Shock Waues 

There are two types of shocks for the gas dynamic equations: backward and 
forward (or 1 and 3) shocks. Here a k-shock is a discontinuity satisfying 
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where c is the normal propagation speed of the shock, and A, = u - c, A2 = u, and 
A3 = u + c are the eigenspeeds of normal equations (4.5), u = A. m/p being the nor- 
mal velocity and c = (yp/p)“’ being the speed of sound [21]. Thus there are three 
characteristics entering each point on the left (right) side and one characteristic 
entering each point on the right (left) side of a backward (forward) shock. We 
therefore solve three characteristic equations to obtain the state ahead of the shock, 
and then solve one characteristic equation together with the Rankine-Hugoniot 
conditions to obtain the state behind the shock. We shall describe the algorithm for 
a forward shock only. 

The normal equations (4.5) for gas dynamics, as written in characteristic form, 
are 

(4.13) 

and 

where v = 6. m/P is the tangential velocity and S = log(p/py)/(y - 1) is the entropy. 
There are no waves transmitted to the right side of a forward shock, so the charac- 
teristic equations determine the state on the right side. We obtain an approximate 
solution of the characteristic equations by solving the difference equations 

2c 2c, -L-u,-- 
Y-1 Y-l 

+u, = y (S, - S,), 

Sr=S2, r 2, 
,’ = ,, (4.14) 

and 

2c 2c3 L+u,--- 
y - 1 Y-1 

u3J9)(Sr-S3), 

where the subscript r refers to values at time t, + At on the right side of the shock, 
and the subscripts 1, 2, and 3 refer to values at the feet of the A,, AZ, and A, charac- 
teristics at time t, (see Fig. 2). 

To obtain these states at the feet of the characteristics we first solve the Riemann 
problem between the left and right states on the front at time to to obtain a 
preliminary shock position at time to+ At. Then the three characteristics, 
approximated as straight lines, are drawn backward from the shock position at 
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FIG. 2. The characteristic curves for a fomard shock. 

t, + At to foot positions in the normal interval [z* z3 + Ar ’ -A] at time zc. The 
corresponding states are obtained using linear interpolation between the right state 
at zO and the state at zO + Ar .8. Using these states in the above difference 
approximation to the characteristic equations yields a right state at rime rc + 81 
that is correct through order At. 

On the left side of the shock only the 1, characteristic impinges on the shock. The 
corresponding characteristic equation is approximated by the difference equation 

2c, 2c,, ---i-U---U 
y-1 1,’ - 1 3/= (yy (S,--s,,i, 

where the subscript 31 refers to values at the foot of the left I., characteristic. The 
Rankine-Hugoniot conditions for a forward shock are 

v,= \’ ?.> ;=(S;+ 1)‘(%+;,- 

and 
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Given the solution obtained above for the state w, on the right side of the shock, 
the characteristic and Rankine-Hugoniot equations yield an approximate left state 
at time to + At that is correct through order At. Finally. the propagation speed of 
the shock is calculated by averaging the shock speeds at time lo and at time I,, + di. 

4.2. The Normal Sweep for Contact Discontinuities 

A contact discontinuity separates two states having diflerent values of density 
and tangential velocity but the same values of pressure and normal velocity. The 
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propagation speed of a contact is the normal particle speed U, so only one family of 
characteristics on each side enters the discontinuity. Thus we have 

and 

on the right and left sides of the contact, respectively. In addition the entropy and 
the tangential velocity on each side of the contact is constant. 

The corresponding difference equations are 

(4.18) 

and 

2c, 2C,, -++u,--- 
1/-l 1’ - 1 

LJ3 = y (S, - S3J, 

where the subscripts I and r refer to left and right values, respectively, at time 
t, + At, while the subscripts lr and 2r refer to values at the feet of the right A, and 
A2 characteristics at time to, and the subscripts 2, and 3[ refer to values at the feet of 
the left A2 and A3 characteristics at time to (see Fig. 3). These states at the feet of 
the characteristics are obtained by linear interpolation in the same fashion as 
described for shock waves. In addition to the characteristic equations we have the 
Rankine-Hugoniot conditions that uI = U, and pI = pr for a contact. By solving these 
equations we obtain an approximate solution to the normal equations that is 
correct at the front through order At. The propagation speed of the contact is 
calculated, as for shocks, by averaging the speeds at time t, and at times I,, + At. 

r 

FIG. 3. The characteristic curves for a contact discontinuity. 
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4.3. The Normal Sweep for Boundaries 

The boundaries are considered as part of the front, and the states on the boun- 
daries are updated using the normal/tangential operator splitting method. The 
boundary conditions under consideration are either Dirichlet or Neumann Periodic 
boundary conditions are implemented so as to have no effect on the solution and 
are not discussed further. 

Dirichlet boundary conditions for the gas dynamics equations are defined 
physically as the coupling to an ambient reservoir (inlet or outlet). Mathematically, 
tbey are defined by the specification of a boundary state. This state plays the role oE 
far-field conditions. Information about the far-field conditions are propagated into 
the computational region only by incoming characteristics. 

Let w[ and w, be the left and right states at a given point zO on the boundary. Let 
w![ be the state at a normal distance Ar on the left side, and w,,. the state at a nor- 
mal distance dr on the right side of the boundary. If the exterior of the com- 
putational region is on the left (right), wli (w,,) is the far-field boundary condition. 
To obtain the normally propagated solution at the boundary we first perform a 
Lax-Wendroff step using wI[, wI, and w, as the values at the points zO- Ar. fi, x0, 
and z,+ Ar. 8, respectively, obtaining the intermediate state wi”. We do the same 
on the right side of the curve obtaining w, . G) Then the computed normal left and 
right states w)” and WY) are obtained by solving the Riemann problem between the 
intermediate states wj’j and WY). 

At Neumann boundary curves we require that the normal velocity vanish. Thus 
only one sonic characteristic, d, or /2,, impinges on the wall. Suppose the com- 
putational region is on the right side of the boundary. Just as in the case of a con- 
tact discontinuity, but taking into account that the normal velocity u vanishes at 
the boundary, the characteristic equations may be approximated by the different 
equations 

and 

s=s,, v = L’2, 

where the subscripts 1 and 2 refer to values at the feet of the i, and 1, charac- 
teristics at time E,. These equations may be solved to yield a solution to the normal 
equations that is correct through order At. 

5. TWO-DIMENSIONAL RIEMANN PROBLEMS 

An intersection of two or more curves of an interface is called a node. In the con- 
text of front tracking, a node is the center of the interaction of the waves meeting at 
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a point. In contrast to the problems discussed in Section 4, the geometry near a 
node does not necessarily admit resolution into normal and tangential components, 
so its evolution cannot be determined by solving a sequence of one-dimensional 
problems. 

A node is categorized by the (circular) ordering and the types of the waves 
emanating from it. In the near vicinity of a node the curves are approximately 
straight lines that separate wedge-shaped regions. Thus we are led to define a two- 
dimensional Riemann problem to be an initial value problem for a two-dimensional 
conservation law having data that is either piecewise constant or is a simple cen- 
tered rarefaction wave in each of a finite number of wedges. The form of the data is 
thus 

w = wj for O,-,<t1<8, (5.1) 

for j = I,..., II, where BO = O,,, and each wj is either a constant or a centered wave. 
Such problems have been studied for scalar conservation laws [14, 16,231, but 
only special solutions are known for systems of conservation laws. In analogy with 
the solution of one-dimensional Riemann problems, the solution of a two-dimen- 
sional Riemann problem will evolve into a more complicated configuration contain- 
ing several nodes (two-dimensional elementary waves interactions) moving apart 
from one another. 

We simplify the problem in two ways. First we look for elementary wave interac- 
tions. These are recognized as being stable under forward time evolution and are 
associated with a single node in the solution of a general Riemann problem. Second 
we restrict ourselves to problems that are generic under change of initial conditions, 
and to solutions that are limits of viscous solutions as the viscosity parameter tends 
to zero. At this point physical intuition and a knowledge of experimental facts allow 
a guess concerning a (nearly complete?) list of elementary wave interactions. Even 
under further restrictions (such as a polytropic gas with only small amplitude 
waves) there seems to be no mathematical analysis of the problem of classifying 
elementary waves in two-dimensional Riemann problems (see [24]). 

As mentioned in Section 2.2, a node is either a fixed node, a boundary node, or a 
physical node. At a fixed node only boundary curves meet. Here we describe the 
case when only two boundary curves meet. Such a node is, for example, a corner of 
a wall (when both curves are of Neumann type) or the end of an inlet or outlet 
(where there is a transition from Neumann to Dirichlet boundary conditions). Its 
propagation involves only the dynamics of the state variables associated with the 
node. In the case of orthogonal curves the updated states are determined using 
operator splitting in the directions normal and tangential to one of the curves. For 
transitions from Neumann to Dirichlet boundaries meeting at general angles this 
algorithm should also be correct. In the case of an arbitrary angle between walls we 
use a scheme in which flux through a polygonal element near the corner is balanced 
to obtain the states around the node. 

The general phenomena at a node where a physical curve interacts with a boun- 
dary curve appear to be as follows. If the boundary curve is of Dirichlet or periodic 
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type, no interaction between the boundary and the physical wave occurs. Thus nor- 
mal/tangential splittin g is correct so long as the states at positions outside of the 
computational region are obtained by applying the appropriate boundary con- 
dition. We therefore restrict the discussion to the interaction of a physical wave 
with a Neumann boundary, i.e., a wall. For a general conservation law, an: 
physical wave can meet a flat wall normally; again normal,‘tangential splitting is 
correct. For gas dynamics a single wave meeting a wall obliqueiy can only be a con- 
tact discontinuity: a slip line can meet a wall only tangentially, and a shock \vave 
can only meet a wall normally, since the normal velocity at the wall must be zero. 
Configurations in which two or more waves meet at the wall can occur, however. ir! 
the regular reflection of a shock wave, two shock wave:, meet at a wall, one b&g 
incident (incoming to the wall), the other being reflected. A shock can also meet E 
smooth portion of a wall obliquely in the presence of a slip line. In effect the slip is 
equivalent to a corner in the wall and the oblique shock is an attached bow shock. 
Such flow can occur in supersonic nozzle flow and leads to boundary separation. 
Additional phenomena, for instance the attached bow shock. occur in the presence 
of discontinuities in the boundary, such as at a corner of a wall or at an inlet. In the 
case of one physical wave the propagation of the node is obtained by operator 
splitting in the normal and tangential directions to the physical curve. In the case of 
two waves. one incident and the other reflected, we use the Rankine+Hugoniot con- 
ditions for the incident wave and shock polar calculations [3] to obtain the an& 
of reflection and the states around the node. As with the one-dimensional Riemann 
problem, non-local information should be (and, in most cases impllemented. is: 
used to compute the effects of waves entering or transmitted through the node. 

The same ideas apply to the classification of interior nodes. In fact a contact dis- 
continuity serves as a reflection surface for shock waves, so that one or two shock 
waves may appear on each side of the contact. The sound speeds on either side or 
the contact generally differ. Moreover the speed of an incident shock as it moves 
along a contact depends on the angle it makes with the contact. Using both scrund 
speeds and incident angles, a fast side and a slow side of the contact can be idea- 
tidied. On the fast side the wave configuration is either a normal shock or a regular 
reflection, while on the slow side a single transmitted shock occurs. Because i-he 
contact can bend at the point of incidence of the shock, the reflected wave can be a 
rarefaction [S]. Also, two incident shock waves can meet each other, producltzg in 
addition a pair of reflected waves and in general a trailing contact disontinui::y. 
However, if the IWO waves belong to the same family, their meel.ing provides E 
transmitted shock, a contact, and a reflected rarefaction wave. The R4ach stem tori- 
figuration is yet another node type. A three-wave interaction is the generic con- 
figuration for contact waves. The classification becom,es more complicated when 
waves ending at points of zero strength are allowed. The propagation of these 
interior nodes is not itnplemented at present. 
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6. VALIDATION 

We present four series of calculations that test the two-dimensional propagation 
of discontinuous waves. The modes of wave propagation in two dimensional gas 
dynamics are shock waves (nonlinear sound waves), contact discontinuities (tem- 
perature fronts), and slip lines (transverse velocity discontinuities). The problems 
testing these modes are chosen to allow verification by means of independent 
solutions. 

6.1. Circularly Symmetric Problems 

In our first series of tests we study the propagation of curved shock waves and 
contact discontinuities evolving from circularly symmetric initial data. An initial 
pressure discontinuity across a circle gives rise to two discontinuous waves, a shock 
and a contact. For these problems the comparison solution is obtained by an 
elementary one-dimensional calculation exploiting the radial symmetry. This 
calculation uses the random choice method? together with a time-splitting step that 
takes account of the source term introduced by the change in coordinates [22]. In 
the front tracking method it is necessary to track the contact wave as well as the 
shock, since otherwise the Lax-Wendroff interior scheme is too unstable on 
reasonable grids. 

In Figs. 4a-d are shown the results of a calculation on a 40 x 40 grid in which the 
pressure inside the initial circle is 100 times higher than outside. Figure 4a shows 
the positions of the contact (the inside circle) and the shock (the outside circle) 
together with the velocity vectors at a time midway in the run. The corresponding 
density and pressure profiles as a function of radius are shown in Figs. 4b and c. In 
these profiles the solid curve is the result from the one-dimensional calculation, 
while the vertical error bars extend from the minimum to the maximum values in 
the two-dimensional solution at fixed radii, indicating the angular dependence of 
the solution. In Fig. 4d the contact and shock positions are plotted vs time, with 
the solid curve showing the comparison answer, and the dots showing the radii of 
the two-dimensional fronts. The deviation of these fronts from circles is too small to 
be plotted in this figure. 

Similarly, Figs. 5a-d show the results for a calculation in which the pressure on 
the inside is 100 times smaller than on the outside. Since for this run there is an 
outward moving rarefaction, a circular reflecting wall (the outermost circle in 
Fig. 5a) was introduced in order to preserve the circular symmetry of the problem. 

6.2. Supersonic Flow past a Wedge 

The supersonic flow past a wedge in a channel was tested by comparing the 
solution with the solution of the steady-state solution obtained by the method of 
characteristics [17]. In this test a bow shock generated by a Mach 3 flow over a 
30” wedge interacts with a Prandl-Meyer expansion. The initial data for the two- 
dimensional calculation was a slight perturbation of the steady-state solution 
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FIG. 4. (a) The shock wave (outer circle), the contact discontinuity (inner circle), and the velocity 
vectors are pictured for a circularly symmetric computation using a 40 x 40 grid. The initial conditions 
consisted of uniform density, zero velocity, and a circular pressure discontinuity at radius 0.2 with 
pressure ratio, inside to outside, of 100. The time it takes a sound wave in the region inside of the con- 
tact to travel 0.4 times the width of the computational region has elapsed. (b). A plot of density vs radius 
corresponding to (a) is shown. The solid curve shows the results obtained in a one-dimensional 
caiculation using the random choice method. The vertical lines represent the range of density values in 
the two-dimensional solution at a fixed radius as the angle varies, Thus the vertical lines show the 
angular dependence in the solution. (c). A plot of pressure vs radius corresponding to (a) is shown. The 
solid curve and the vertical lines represent the one- and two-dimensional results, as explained in the cap- 
tion to (b). (d). A plot of the radius of the contact discontinuity (C) and the radius of the shock wave 
(S) as functions of time is presented. The solid curves were obtained by passive tracking in the one- 
dimensional random choice solution. The dots represent radius values in the two-dimensional solution. 
The angular dependence of the radius, i.c., the deviation of the tracked front from a circle, is too small to 
pIot. 
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FIG. 5. (a) The shock wave (inner circle), the contact discontinuity (outer circle), and the velocity 
vectors are pictured for a circularly symmetric computation using a 40 x 40 grid. The initial conditions 
consisted of uniform density, zero velocity, and a circular pressure discontinuity at radius 0.35 with 
pressure ratio, inside to outside, of 0.01. The time it takes a sound wave in the region outside of the con- 
tact to travel 0.48 times the width of the computational region has elapsed. The outermost circle is a 
reflecting wall, introduced to maintain circular symmetry. (b). A plot of density vs radius corresponding 
to (a) is shown. The solid curves and the vertical lines represent the one- and two-dimensional results, as 
explained in the caption to Fig. 4b. (c). A plot of pressure vs radius corresponding to (a) is shown. The 
solid curves and the vertical lines represent the one- and two-dimensional results, as explained in the 
caption to Fig. 4b. (d). A plot of the radius of the contact discontinuity (CJ and the radius of the shock 
wave (S) as functions of time is presented. The solid curves and the dots represent the one- and two- 
dimensional solutions, as explained in the caption in Fig. 4d. 
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FIG. 6. (a) The position of the bow shock {S) and the isopycnic (constant density) contom are 
shown for the steady-state flow configuration obtained when parallel supersonic flow aith Mach number 
3 impinges from the left on a 30’ wedge (IV). These data were calculated using a one-dimensionai ran- 
dom choice method for steady, supersonic flow. (b) The position of the bow shock (S) and the isopycnic 
contours, as obtained in a time-dependent calculation on a 50 x 50 grid starting from the steady-state 
flow conditions of (a), are shown. The time it takes a sound wave in the region ahead of the bow shock 
to travel upstream 1.2 times the length of the wave has elapsed. 

obtained using the method of characteristics. The flow was simulated using a 
50 x 50 grid for 200 steps, so that an upstream signal had time to move across the 
computational region. 

Jn Figs. 6a and b we show the initial and final shock positions together with the 
isopycnic (constant density j contours. In Figs. 7a and b we show the initiai and 
final density distributions along the two sides of the shock. Figures ga, b and ?a. b 
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FIG. 7. (a, b) Initial and final density distributions along the two sides of the bow shock are plotted 
vs distance along the shock, from the attachment point (a) of the bow shock to its exit point (e), for the 
computation described in Fig. 6b. 
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FIG. 8. (a, b) Initial and final density distributions along the wedge are plotted vs distance along the 
wedge, from the attachment point (a) of the bow shock to the exit point (w) of the wedge, for the com- 
putation described in Fig. 6b. 

show the analogous density distributions along the wedge and along the portion of 
the exit below the shock, respectively. These figures indicate that the front tracking 
scheme accurately reproduces the steady-state solution. In this test it was especially 
important to apply the boundary conditions along the wedge correctly. 

6.3. The Kelvin-Helnzholtz Instabilit?’ 

The classical Kelvin-Helmholtz instability concerns two fluids separated by an 
interface across which there is a discontinuity in the tangential velocity. Such a flow 
configuration is unstable against a sinusoidal perturbation of the interface. In the 
regime where the amplitude is small relative to the wavelength, a first-order correc- 
tion to the linearized equations provides a comparison solution. As illustrated in 
Fig. 10, we look for a periodic solution of the equations of gas dynamics that 
reduces, in the limit where the amplitude of the slip line is small, to a flow with con- 
stant density and pressure throughout, and constant particle velocity v0 above and 

FIG. 9. (a, b) Initial and tinal density distributions along the exit are plotted vs distance along the 
exit, from the exit point (e) of the bow shock down to the wedge (a), for the computation described in 
Fig. 6b. 



FRONT TRACKING FOR GAS DYNAMICS 105 

FIG. 10. The flow configuration for the Kelvin-Helmholtz instability is plotted. There is a sinusoidal 
slip line (solid line) separating the region above from the region below. In the regime where the 
amplitude of the slip line is small the density and pressure are almost constant throughout the flow, 
while the fluid velocities are approximately horizontal, with the velocity above equal and opposite to the 
velocity below. 

a 

v.v time &m 

FIG. 11. A plot of the amplitude in the slip line vs time is shown for the Kelvin-HelmholE 
instability in the small amplitude regime. For the curves (L,-L,) (which are indistinguishable in this 
graph) the jump in the velocity has Mach number 0.1, while for the curves (II,-H,) the jump jn the 
velocity has Mach number 1. In each case curve 1 was obtained numerically using a 20 x 20 grid, 
whereas curves 2 and 3 were obtained for compressible and incompressible flow, respectively, using per- 
turbation analysis in the amplitude of the slip line. At the higher Mach number it is important to model 
the significant compressibility effects. 
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-\fo below. By linearizing the conservation of mass and Crocco’s equations one 
obtains [19] the wave equation for the velocity potential. The solution exhibits an 
exponentially growing sinusoidal interface with a growth rate that &pen& on the 
jump 2 vo/cO in the Mach number of the free stream and on the distance to the 
boundaries. The corresponding result obtained assuming incompressibility of the 
fluid is obtained in the limit of vanishing Mach number. 

The results of our numerical experiments are shown in Figs. 11 and 12aac. Figure 
11 is a plot of the amplitude of the sinusoidal slip line as a function of time for a 
small initial perturbation (amplitude-to-wavelength ratio of 0.005). There are two 
cases, corresponding to Mach numbers jump 1 and 0.1. The result from the linear 
analysis, both compressible and incompressible, are superimposed. As this plot 
demonstrates, the growth rate is accurately calculated even in the regime where 
methods for incompressible fluids are invalid. 

Calculations were also performed in the large amplitude regime. The initial flow 
field, shown in Fig. 10, was obtained using the perturbation formulae at an 
amplitude-to-wavelength ratio of 0.2 and Mach number jump 0.4. Figures 12a and 
b show the slip line and the monumentum density vectors as computed with a 
20 x 20 grid and a 40 x 40 grid, respectively. Figure 12c shows the slip line for the 
same run as computed with an 80 x 80 grid. The slip lines for all three runs are 
superposed in Fig. 12d. All three runs agree in the general form of the slip line. The 
finer grids show evidence of vortex formation and roll-up at shorter wavelengths. 
We stress, though, that even the qualitative shape of the slip line is extremely sen- 
sitive to the initial flow conditions. For instance if the initial slip line is taken to be 
purely sinusoidal in the vorticity rather than in the horizontal displacement [15], 
the slip line we calculate evolves into a single tight spiral. The authors know of no 
comparison solution for this problem, which involves the effects of the com- 
pressibility of the fluid and the presence of boundaries, but the results are in 
qualitative agreement with incompressible calculations. 

6.4. Regular Reflection qf CI Shock Tl’aoe 

Finally, the numerical solution for non-steady regular reflection of a shock wave 
reflections were compared with experimental results [4]. In the test problem a 
shock with Mach number is Ms= 2.05 is incident on a wedge with angle 
Bw = 63.4’. 

We started the calculations with a small reflected shock enclosing a region (called 
the bubble) one-quarter of a mesh interval in height and with almost arbitrary data 
inside. The calculations were somewhat unstable in the neighborhood of the corner 
for a bubble smaller than two mesh intervals in height. After the bubble was higher 
than four mesh intervals the effects of the instability were not significant. At this 
stage of the run we found that the solution had settled down to its self-similar form 
and was largely independent of the initial data. In Fig. 13a the isopycnic (constant 
density) contours that we obtained numerically are shown at two stages in the run. 
In Fig. 13b the wall density distribution obtained in our calculations at the end of 
the run is superimposed on the experimental data. 
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FIG. 12. (a) The slip line and the monumentum densities are shown for the Kelvin-Helmhoitr 
instability with a large amplitude. The calculation was made on a 20 x 30 grid. The initial data, shown m 
Fig. 10. were obtained by the perturbation analysis for a velocity jump with Mach number 0.4. The tmx 
it takes a sound wave to travel 0.72 wavelength has elapsed. In the large amplitude regime the slip hne 
no longer remains sinusoidal, but rather rolls up as vortices are formed. (b) The slip line and the 
monumentum densities are plotted for the problem described in (a), as calculated on a 40 x 40 grid. (ci 
The slip lme is plotted for the problem described in Fig. (a). as calculated on an 80 x 80 grid. (d) The slip 
iine positions, as computed on 20 x 20. 40 x 40, and 80 x 80 grids, are superposed for the problem 
described in (a). Fine structure in the vortices and in the shape of the slip line becomes evident under 
refinement of the computational grid. The authors know of no comparison solution for this problem. 
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Frc.. 13. (a) The isopycnic (constant density) contours are shown for a regular reflection problem in 
which an incident shock (I), moving downward and to the right into ambient gas, impinges on a 
reflecting wall (W) and reflects at point (r) to form a reflected shock (R). In this computation the Mach 
number of the incident shock is 2.05, and the angle of incidence of the shock on the wall is 26.6”. The 
calculations were performed on a 60 x 40 grid. (b) The density distribution along the wall for the 
problem described in (a) is plotted vs distance along the wall. The solid curve was obtained by numerical 
calculation, while the dots show the experimental results for air obtained by Deschambault and 
Glass [4]. 
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7. CONCLUSIONS 

We have seen that front tracking gives correct results for a series of test problems 
in compressible fluid dynamics. Computations on even coarse grids give satisfactory 
answers for the problems considered here. For example, in the regular reflection 
run, convergence to the self-similar solution has occurred when the region enclosed 
by the reflected shock is about 5 mesh blocks high. In the runs with circularly sym- 
metric initial data, the contact and shock are initially separated by 0.4 mesh biock; 
while by the middle of the run they are separated by 3 mesh blocks. Successful 
solution of test problems on coarse grids is critically important if complicated 
problems are to be solved on computers available within the near future. Also, the 
ability to handle bifurcations in the front topology is important for complicated 
problems. This capability exists at present for the oil reservoir version of front 
tracking [9] and is currently being implemented for gas dynamics. 

Exactly the same source code for the interface, front, hyperbolic, driver, and 
utility libraries has been applied to diverse physical applications. The front tracking 
code is a large code, but its modular structure has minimized the problems typically 
associated with the development and use of such codes. The multiple applications 
have encouraged a more universal approach to the portions of the code for which 
generality is appropriate. Moreover, each application has benefited from progress 
necessitated by special difficulties in other applications. See [7-9. 131 for validation, 
of front tracking for incompressible flow and for oil reservoirs. Thus front tracking 
has been fruitful in providing a general framework for the numerical solution of 
hydrodynamic problems. 
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